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A simple and straightforward synthesis of 1-substituted-4-aryl-5-fluoro-1,2,3,6-tetrahydropyridine (3) or
1-substituted 4-diarylmethanoyl-4-fluoropiperidine (6) by the treatment of piperidinyl exo- or endo-ole-
fin with 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate (Selectfluor) is
reported. Two transformations from endo-olefin 1 to allylic fluoride 3 and from exo-olefin 2 to fluorohy-
drin 6 proceed via allylic fluorination and fluorohydroxylation in moderate yields. It presents two novel
reactions promoted by Selectfluor and broadens the scope of application.

� 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

Notably, Selectfluor™ has been reviewed for reactions involving
carbon-fluoride formation.1 Due to the numerous advantages asso-
ciated with this mild, stable, and eco-friendly compound, recent
investigations have explored its applications as an effective re-
agent for some interesting reactions. Some representative exam-
ples include oxidation,2 a-fluorination,3 rearrangement,4

deprotection5 etc. Especially, the reaction of olefins with electro-
philic fluorinating agents in the presence of nucleophiles was well
documented.6 Recently, we investigated some interesting reactions
related to the structures of 4-aryl-1,2,3,6-tetrahydropyridine 1 and
4-diarylmethylenepiperidine 2 by a combination of m-chloroper-
oxybenzoic acid/boron trifluoride etherate-promoted ring-contrac-
tion and ring-expansion7 or selenium dioxide-mediated
methoxyhydroxylation8 (Scheme 1). To explore the synthetic
application of two frameworks, a simple strategy for Selectfluor-
mediated allylic fluorination of 1 and fluorohydroxylation of 2
was developed.

The unique structural feature of fluoropiperidine prompted
many strategies from synthetic chemists.9 Indeed, the molecular
framework of fluoropiperidine has been used as a core template
to design unique ligands binding to various molecular targets
(Fig. 1).10 Several research groups have examined the pharmaco-
logical activities for these fluorinated piperidines. For instance, 3-
arylfluoropiperidne derivatives had been identified the high-
throughput assay for important resistance patterns in the Gram-
negative pathogens by Thorarensen group.10g Stanton et al. had
ll rights reserved.
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Scheme 2. Synthesis of 3-azidopiperidin-4,5-diols 4.
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identified that a novel series of fluorinated piperidine acetic acid is
the modulator of c-secretase.9a van Niel et al. had found that a no-
vel series of 3-fluoro-4-aminopiperidines have high affinity for 5-
HT1D.9e Rimoldi et al. had reported that b-fluoro-4-phenyl-
1,2,3,6-tetrahydropyridine analogs can evaluate the contribution
of electronic parameters to monoamine oxidase (MAO-B).10h

2. Results and discussion

Our initial investigation focused on the reaction of piperidinyl
endo-olefin 1 or piperidinyl exo-olefin 2 with fluorinating reagents,
such as Deoxo-Fluor or (diethylamino)sulfur trifluoride (DAST).
However, trace amount of the fluoroproduct was isolated and the
major starting material 1 or 2 was recovered. When N-fluoroben-
zenesulfonimide (NFSI) or fluoropyridinium salt was chosen as
the reagent, complex fluoro-containing product was yielded under
a number of reaction conditions. Interestingly, a significant amount
of allylic fluorination product or fluorohydroxylation product was
observed when Selectfluor was used as a fluorinating reagent un-
der the general condition usually used in this literature. Selectflu-
or-mediated allylic fluorination of 1 was shown in Table 1. We first
applied the condition to a diverse range of endo-olefin 1a. Com-
pared with entries 1–4, the yield of compound 3a was decreasing
under the condition of the prolonged time and elevated tempera-
ture. This might be due to the fact that compound 3a is easily aro-
matized to the major fluoropyridine product. The optimized
reaction system was the reaction of 1 with Selectfluor (1.1 equiv)
in the co-solvent of acetonitrile (10 mL) and water (1 mL) at 40–
50 �C for 4–5 h.11

The resulting products 3 were obtained in 33–65% yields (en-
tries 5–18). The typical experimental procedure offers a general
and efficient alternative to the typical allylic monofluorination
reaction of 1. In entry 7, the dr value of (S,S)-3d is determined as
the ratio of 94:6 by chiral phase HPLC. But, treatment of 1m
Table 1
Allylic monofluorination of endo-olefins 1a,b

Selectfluor (1.1 equiv)

MeCN / H2O = 1 / 1

1a-1m

X

Ar

3a-3m

X

Ar
F

X

Ar
H

intermediate I 

F

Entry Ar, X group Temp/time (h) Product 3/yield (%)

1 1a, Ph, NMs 40 �C/4 3a (61)
2 40 �C/8 3a (30)
3 40 �C/20 3a (trace)
4 Reflux/1 3a (trace)
5 1b, Ph, NBs 40 �C/4 3b (65)
6 1c, Ph, NTs 40 �C/4 3c (58)
7 1d, Ph, (1S)-NSO2Camphor 40 �C/4 3d (49)
8 1e, Ph, NBz 40 �C/4 3e (30)
9 50 �C/5 3e (51)

10 1f, Ph, N-4-FBz 50 �C/5 3f (43)
11 1g, Ph, N-4-MeOBz 50 �C/5 3g (48)
12 1h, Ph, N-2-COthiophene 50 �C/5 3h (45)
13 1i, 2-MeOPh, NBs 40 �C/4 3i (51)
14 1j, 3-CF3Ph, NBs 40 �C/4 3j (61)
15 1k, 4-FPh, NBs 40 �C/4 3k (60)
16 1l, 4-Cl-3-CF3Ph, NBs 40 �C/4 3l (65)
17 1m, 3-MeOPh, O 40 �C/4 3m (23)
18 50 �C/5 3m (8)

a Reactions were performed in the co-solvent of MeCN (10 mL) and water (1 mL)
using the following mole ratios: 1/Selectfluor = 1:1.1.

b The isolated products are >95% pure as judged by 1H NMR analysis.
(X = O) with Selectrfluor yielded 3m in only 8% or 23% yield. The
characteristic structural framework of 3b and 3d was determined
by single-crystal X-ray analysis.12 The mechanism proposed for
the allylic fluorination of 1 by Selectfluor involves the formation
of a benzylic carbocation intermediate I. Skeleton 3 is afforded
from intermediate I via hydrogen abstraction.

To further explore the application of 3, synthesis of 3-azidopi-
peridine-4,5-diol 4 was shown in Scheme 2. Hydroxylated piperi-
dines have demonstrated their utility in the treatment of
carbohydrate-mediated diseases.13,14 Azidodiol 4a was easily gen-
erated by a two-step methodology of nucleophilic substitution of
compound 3b with sodium azide in acetone and subsequently by
osmylation of the corresponding allylic azide in 62% yield.15 The
total synthetic procedure could be monitored by TLC until the reac-
tion was complete. Noticeably, allylic azide is unstable. With the
results in hand, treatment of compound 3i, 3k, or 3l produced com-
pound 4b–d by the above protocols. Further, hydrogenation was
accomplished by treatment of compound 4a with hydrogen on
10% palladium-activated carbon to yield aminodiol 5. It presents
a new methodology for synthesizing 4-arylazasugar analogs.

Regioselective fluorohydroxylation of piperidinyl exo-olefin 2
with Selectfluor was shown in Table 2. The optimized reaction sys-
tem should be the reaction of exo-olefin 2 with Selectfluor
(1.1 equiv) in the co-solvent of acetonitrile (10 mL) and water
(1 mL) at reflux temperature.16 During the process, reaction of ole-
fin 2 was only affected by elevated temperature. Under the reflux
temperature, reaction of compound 2a was achieved completely
to generate fluorohydrin 6a without the starting material recov-
ered (entries 1–4). In entries 5–16, the resulting fluorohydrins
6a–j were obtained in 61–93% yields.11 Further, fluorohydroxyla-
tion of compound 2k with cyclopentane ring or 2l with acyclic pro-
pane unit was transformed to compound 6k or 6l and the reaction
of compound 2m with 3-diphenylmethylenyl group was also con-
ducted to the 3-fluoropiperidine skeleton 6m.

Based on the above results, we examined the fluoroalkoxylation
of compound 2b. Treatment of compound 2b with several alcohols
(e.g., methanol, ethanol, and isopropanol) as the solvent by the
similar protocol produced fluoroalkoxides 7a–c in 72–87% yields
as shown in Scheme 3. It was also interesting to evaluate the com-
patibility of fluorinating reagent with nucleophilic reagents. But,
no reaction between Selectfluor and TMSCN in dry acetonitrile
was noted. In contrast, the combination might cause rapid decom-
position of TMSCN to form TMSF.

On the basis of the above-mentioned results, four fluorohydrins
6b, 6d, 6e, and 6g with piperidinyl and tetrahydropyranyl frame-
works were applied to examine the interesting pinacol-type rear-
rangement as shown in Scheme 4. When compound 6b was
treated with boron trifluoride etherate in dichloromethane, the
sole compound 8a was isolated in 78% yield. The conversion of flu-
orohydrin 6 to a-aryl arylketone 8 is the type of pinacol to pinaco-
lone rearrangement.7b Especially, the aryl group could displace the
tertiary fluoride atom during the intramolecular pinacol-type reac-
tion process. Arylketones 8b–d were also prepared in 69–82%
yields.



Table 2
Fluorohydroxylation of exo-olefins 2a,b

Selectfluor (1.1 equiv)

MeCN / H2O = 1 / 1

2a-2j

X

6a-6j

X

ArAr

F

Ar

Ar

OH

Entry Ar, X group Temp/time (h) Product 6 or 2/yield (%)

1 2a, Ph, NMs 40 �C/20 6a (31) + 2a (48)
2 40 �C/60 6a (73) + 2a (11)
3 Reflux/1 6a (63) + 2a (25)
4 Reflux/4 6a (93)
5 2b, Ph, NBs Reflux/4 6b (88)
6 2c, Ph, NTs Reflux/4 6c (83)
7 2d, 4-MeOPh, NBs Reflux/4 6d (85)
8 2e, 4-FPh, NBs Reflux/4 6e (79)
9 2f, Ph, O Reflux/4 6f (82)

10 2g, 4-MeOPh, O Reflux/4 6g (88)
11 2h, 4-FPh, O Reflux/4 6h (85)
12 2i, Ph, CH2 Reflux/4 6i (70)
13 2j, 4-MeOPh, CH2 Reflux/4 6j (72)

14

2k, 

PhPh

Reflux/4

HO
Ph Ph

F

6k (64) 

15
2l, 

PhPh

Reflux/4

Ph
Ph OH

F 6l (61)

16

2m, 

N
Bs

Ph

Ph
Reflux/4

N
Bs

Ph
Ph

OHF

6m (76)

a Reactions were performed in the co-solvent of MeCN (10 mL) and water (1 mL)
using the following mole ratios: 2/Selectfluor = 1:1.1.

b The isolated products are >95% pure as judged by 1H NMR analysis.
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Next, condensation of compound 8a with hydroxylamine and
subsequently by boron trifluoride etherate-mediated rearrange-
ment of the corresponding oxime yielded phenylnitrile and com-
pound 1b. The expected Beckmann amide product was not
observed during the process. When repeated treatment of com-
pound 6b with Selectfluor (2.0 equiv) or NFSI (2.0 equiv), difluoro-
piperidine 9 was provided in 86% or 72% yield, respectively, during
the fluorination (Scheme 5). The structural framework of com-
pounds 6a, 6h, 7a, and 8b was determined by single-crystal X-
ray analysis.17

3. Conclusion

In summary, we have successfully presented a synthetic meth-
odology for producing a series of the novel 3- and 4-fluoropiperi-
dine involving Selectfluor-mediated allylic fluorination and
fluorohydroxylation. Under the Selectfluor-promoted fluorination
system, a wide range of 4-aryl-1,2,3,6-tetrahydropyridines and
diarylmethylenyl heterocycles was well studied. Several structures
of the target products were nicely confirmed by X-ray crystal anal-
ysis. The structure–activity studies of desulfonated compound 3 or
6 in the MAO-B studies will be investigated in following work.
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